Microbiological and physico-chemical assessment of the sacred river Alaknanda, India

*Nidhi Sharma¹, R. C. Sharma²

¹Department of Microbiology, J. V. College, Baraut- Baghatpur, U.P., India
²Department of Environmental Sciences, H. N. B. Garhwal University, Srinagar, Garhwal, Uttarakhand, India

ABSTRACT

The Alaknanda River is one of the main rivers of Alaknanda sub-system which bubbles out from Alkapuri Glacier. Water quality of the sacred river Alaknanda was evaluated by microbiological and physico-chemical methods. The sampling was undertaken from various sites of lower stretches, including Rudraprayag (530 m a.s.l.), Srinagar (560 m a.s.l.) and Deoprayag upstream (457 m a.s.l.) on the river Alaknanda. A perusal of the data revealed that total viable count (CFU.ml⁻¹) was recorded minimum (25,850 CFU.ml⁻¹) in winter season and then it increased during summer (45,730 CFU.ml⁻¹) and attained peak (56,110 CFU.ml⁻¹) during monsoon season, when the maximum degradation in the water quality was observed. Due to the onset of autumn and winter seasons, the quality of water improved substantially and the density of the bacteria decreased (32,120 CFU.ml⁻¹) significantly during autumn from the monsoon season. It is revealed that the myriad of physico-chemical environmental variables and nutrient load from various sources in the habitat environment are responsible for density and diversity in the sacred river Alakanda.

KEYWORDS

Microbiological Assessment, Physico-Chemical Assessment, Alaknanda River, Water Quality

MATERIALS AND METHODS

SAMPLE COLLECTION

The sampling was undertaken from various sites of upper stretches, including Badrinath (3,110 m a.s.l.), Tapovan (2,000 m a.s.l.), Vishnuprayag (1,460 m a.s.l.), Karnprayag (795 m a.s.l.), and Agustyamuni (610 m a.s.l.), on the river Alaknanda. Water samples from the sites were collected by dipping the autoclaved sample bottles and closing the cap under water to prevent atmospheric exposure. Collections of samples were taken from all the sites during the period from October 2005 to September 2007 for the microbiological assessment of the water quality of the river Alaknanda. Physical and chemical data. The sampling was undertaken from various sites including Badrinath (3,110 m a.s.l.), Tapovan (2,000 m a.s.l.), Vishnuprayag (1,460 m a.s.l.), Karnprayag (795 m a.s.l.), and
Agustyamuni (610 m a.s.l.) on the river Alaknanda. Water samples from these sites were collected by dipping the autoclaved sample bottles and closing the cap under water to prevent atmospheric exposure. Collections of samples were taken from all the sites during the period from October 2005 to September 2007 for the microbiological and physico-chemical evaluation of the water quality of the river Alaknanda. Physico-chemical and microbiological characteristics of these sites were analyzed following the standard methods outlined in Welch (1952), Golterman et al. (1978), Wetzel and Likens (1991) and APHA (1998).

MEDIA AND GROWTH CONDITION MICROBIAL- ISOLATION

SPC agar media (HiMEDIA) was used for the estimation of the numbers of colony forming units (CFUs) of bacteria. Media pH for bacterial isolation was set according to the pH of sampling sites. Media were autoclaved at 121°C and 15 pound/inch² pressure for 20 minutes. Pure cultures were obtained by repetitive streaking of differentiated bacteria colonies on agar media plate. Gram staining was performed for confirmation of purity of the culture.

RESULTS AND DISCUSSION

PHYSICO- CHEMICAL DATA

The physical parameters (water temperature, turbidity, transparency, and total dissolved solids) and the chemical parameters (hydrogen ion concentration and dissolved oxygen) of the water of the river Alaknanda from all sampling sites were recorded (Table 1). The water temperature in the high altitude zone of the river Alaknanda fluctuated from a minimum 7.90±1.24 °C (during winters) to a maximum of 13.5±0.009 °C (during monsoon season). The water temperature during the summer season could not attain peak due to mixing of melting snow due to rise in the atmospheric temperature. The water was almost clear (1.34±0.006 NTU- 3.80±0.51 NTU) during autumn and winter seasons in the high altitude zone of the river Alaknanda. However, maximum turbid (178.43±174.65 NTU) water was recorded during monsoon season due to mixing of heavy silt, sand and clay due to heavy precipitation in the catchment areas of the river. The transparency of the river Alaknanda was found to be minimum (0.48±0.002 m) during monsoon season and maximum (1.78±0.000 m) during winter season during the entire period of study. The total dissolved solids (TDS) were found to be maximum (132.0±10.61 mg l⁻¹) during monsoon season and minimum (62.26±62.03 mg l⁻¹) in winter season. However, the hydrogen ion concentration (pH) ranged from 7.30±0.19 to 7.79±1.07 during the entire period of study, which shows the slightly alkaline nature of the river Alaknanda. The dissolved oxygen recorded from the high altitude zone of the river Alaknanda revealed that it was maximum (16.50±0.50 mg l⁻¹) in winter and minimum (10.30±0.40 mg l⁻¹) in monsoon season.

MICROBIAL DATA

A perusal of data on the density and diversity of microbes at all the sites of river Alaknanda revealed that it increased from high to lower altitude. Mean seasonal variations in colony forming units (CFU ml⁻¹) of bacterial density recorded high altitudinal stretches of the river Alaknanda have been presented in Figure 2. A perusal of the data revealed that it was recorded minimum (20,230 CFU ml⁻¹) in winter season and then it increased during summer (31,040 CFU ml⁻¹) and attained peak (37,030 CFU ml⁻¹) during monsoon season, when the maximum degradation in the water quality was observed. Due to the onset of autumn and winter seasons, the quality of water improved substantially and the density of the bacteria decreased (25,150 CFU ml⁻¹) significantly during autumn from the monsoon season.
Table 1. Mean ($\bar{x} \pm SD$) seasonal variations in physico-chemical environmental variables at high altitudinal (610 m a.s.l - 3,110 m a.s.l) stretches of river Alaknanda.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Autumn (Oct- Nov)</th>
<th>Winter (Dec-March)</th>
<th>Summer (April-Jun)</th>
<th>Monsoon (Jul-Sep)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Temperature ($^\circ$C)</td>
<td>10.61±1.41</td>
<td>7.90 ±1.24</td>
<td>12.25±0.65</td>
<td>13.5±0.009</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>1.34±0.006</td>
<td>3.80±0.51</td>
<td>45.00±38.25</td>
<td>178.43±174.65</td>
</tr>
<tr>
<td>Transparency (m)</td>
<td>1.55±0.13</td>
<td>1.78±00.00</td>
<td>1.35±0.30</td>
<td>0.48±0.002</td>
</tr>
<tr>
<td>Conductivity (μ S cm$^{-1}$)</td>
<td>0.130±0.009</td>
<td>0.090±7.07</td>
<td>0.175±15.00</td>
<td>0.137±0.01</td>
</tr>
<tr>
<td>TDS (mg l$^{-1}$)</td>
<td>75.07±7.07</td>
<td>62.26±62.03</td>
<td>82.5±24.75</td>
<td>132.0±10.61</td>
</tr>
<tr>
<td>pH</td>
<td>7.45±0.43</td>
<td>7.30±0.19</td>
<td>7.55±0.23</td>
<td>7.79±1.07</td>
</tr>
<tr>
<td>Dissolved Oxygen (mg l$^{-1}$)</td>
<td>12.75±0.80</td>
<td>16.50±0.50</td>
<td>10.55±0.056</td>
<td>10.30±0.40</td>
</tr>
</tbody>
</table>

Fig 1. Mean ($\bar{x} \pm SD$) seasonal variations in colony forming units (CFU.ml$^{-1}$) of bacteria in high altitude zones of the river Alaknanda.

STATISTICAL TREATMENT OF DATA

Regression analyses were made between the colony forming units (CFUs.ml$^{-1}$) of bacteria and physico-chemical environmental parameters (Fig. 3). A significant correlation of colony forming units (CFUs.ml$^{-1}$) of bacteria were found positive with the water temperature, Turbidity, Total dissolved solids (TDS), and Total Hydrogen ion concentration. However, a significant correlation of colony forming units (CFUs.ml$^{-1}$) of bacteria was found negative with the Transparency and Dissolved oxygen.
Heterotrophic bacteria contribute to the cycles of nutrients and carbon in two major ways - by the production of new bacterial biomass (secondary production) and by the remineralization of organic carbon and nutrients. Seasonal variations in physico-chemical environmental variables have played an important role in distribution, periodicity and diversity of microbes. Mokbel and Yamkanamardi (2008) concluded on the basis of statistical treatment of data on temporal variations in the abundance of microbes that several physico-chemical parameters (temperature, pH, TDS, alkalinity etc.) were potentially responsible for temporal variations in heterotrophic bacterial abundance. The water temperature varies with that of the atmospheric temperature in aquatic ecosystem. The temperature was recorded highest during monsoon season and lowest during winter season. At all the sampling sites of Alaknanda, the seasonal mean of bacterial standard plate count (CFU ml\(^{-1}\)) was found to be minimum (20,230 CFU ml\(^{-1}\)) during winter season and maximum (37,030 CFU ml\(^{-1}\)) during monsoon season with a moderate (37,030 CFU ml\(^{-1}\)) during summer season. Then, the density declined (25,150 CFU ml\(^{-1}\)) in autumn season due to improve in the quality of water (Fig. 2).

The present study on the microbial assessment in the Alaknanda River also confirmed the observations made by other workers that the colony forming units increased substantially during high temperature, heavy discharge, rain fall and flooding during monsoon season. Turbidity was found to be minimum during autumn and winter seasons and maximum in monsoon season at all the sampling sites of the river Alaknanda. However, turbidity can interfere with disinfection and provide a medium for microbial growth. High turbidity can provide food and shelter for pathogens. However, a positive correlation was found between turbidity and total bacterial colony forming units in the river Alaknanda. Transparency was found to be low in autumn and winter seasons at all sampling sites of river. Low visibility prevailed for a brief period during the summer and monsoon seasons. The reduced transparency may be due to silt carried by monsoon rains and snow melting in the higher reaches.

The increased transparency in autumn and winter seasons may be due to the absence of the rains and thus run off as well as gradual settling of suspended particles. However, a negative correlation was found between transparency and total bacterial colony forming units at all the sites of the rivers of Garhwal Himalaya. Total dissolved solids (TDS) denote mainly the various kinds of minerals present in water. That may be composed mainly of carbonates, bicarbonates, chlorides, sulphates, phosphates and nitrates of Calcium, Magnesium, Sodium and Potassium. TDS was found to be minimum in winter season and maximum during monsoon season at all sampling sites of the river Alaknanda River. The increasing pattern in monsoon season may be due to addition of inorganic salts and organic matter carried along with rain water and surface run off during monsoon season. The pH is the measure of the intensity of acidity or alkalinity and measures the concentration of hydrogen ion concentration in water. The distribution of hydrogen ion concentration (pH) was found to be moderate and remain slightly alkaline throughout the year at all the sampling sites of the river Alaknanda. However, a negative correlation was found
Fig 2. Regression line plotted against the colony forming units (CFU.ml⁻¹) of bacteria and physicochemical environmental variables of the high altitude zones of the river Alaknanda.
between pH and colony forming units of bacteria. Organic matter contents of water and sample showed its highest values in winter months, where pH values did not perform any regular seasonal variations.

Dissolved oxygen (DO) is one of the most important chemical parameters, which reflects the physical and biological processes prevailing in the waters. It was recorded maximum during winter season and minimum during summer and monsoon seasons. However, a negative correlation was found between DO and colony forming units of bacteria. Keeping in view, the above discussion, it is concluded that the myriad of physico-chemical environmental variables and nutrient load from various sources in the habitat environment are responsible for density and diversity in the sacred river Alaknanda. The settlement of people nearby the river stretches, open defecation, several hindu rituals, traditions and beliefs and several anthropogenic activities might have contributed to this. Therefore, remedial measures in terms of control of discharge of untreated sewage, ban on dumping of solid waste in to the river and regulation of excess human interference are urgently required for improving the water quality of sacred river Alaknanda.

REFERENCES

Manuscript received on April 9, 2016, Accepted for publication on May 28, 2016