A review study on botanical pesticides for the management of stored grain insect pests

Sanjeet Kumar¹, Opin Kumar², S. P. Singh³

Krishi Vigyan Kendra, Sonbhadra (CRS- N. D. University of Agriculture and Technology, Kumarganj) Tisuli, Marihan, U.P., India
¹Department of Agriculture, Saharanpur, U.P., India
²Krishi Vigyan Kendra, Barabanji (N. D. University of Agriculture and Technology, Kumarganj, Ayodhya) U.P., India

Corresponding email: skagronomist@gmail.com

Food grains form an important part of the vegetarian Indian diet. Grain production has been steadily increasing due to advancement in production technology, but improper storage results in high losses in grains. The monetary value of these losses amounts to more than Rs 50,000 crores per year (Singh, 2010). A large number of insect pests have been reported to be associated with stored grains. Almost all species have remarkably high rates of multiplication and, within one season, may destroy 10-15 percent of the grain and contaminate the rest with undesirable odours and flavours. The major pests of stored grains include beetles (*Callosobruchus* sp, *T. granarium, Tribolium confusum*), weevils (*Acanthoscelides obtectus*), moth (*Corcyra cephalonica*) and rodents. The control measures include two types of treatment i.e. prophylactic and curative. The prophylactic treatment involves the use of pesticides like Malathion (50% EC), DDVP (76% EC) and Deltamethrin (2.5% WP). Curative treatment involves use of fumigant aluminium phosphate to control infested stock or godown in airtight condition. For controlling rodents rat cages, poison baits and use of rat bait fumigation is recommended (India Agronet, 2009). Tissue of higher plants contain arrays of biochemicals, known as “Secondary plant chemicals” (or allelochemicals), which are defensive in function. They include alkaloids, steroids, phenolics, saponins, resins, essential oils, various organic acids and other compounds. It is well known that secondary plant metabolites may act as kairomones, allomones, stimulants or deterrents of feeding and oviposition, and as antifeedants, insecticides and insect hormone mimics. Many plant allelochemicals including azadirachtin, nicotine, pyrethrins and rotenoids have been developed as commercial insecticide (Talukder, 2006). Botanical extracts kill and repel pests, affect insect growth and development, have antifeedant and arrestant effects, and have antifungal, antiviral, and antibacterial properties against pathogens (Prakash and Rao, 1986, 1997). They can be grouped into five major chemical categories: nitrogen compounds (primarily alkaloids), terpenoids, phenolics, proteinase inhibitors, and growth regulators. In developing countries, pesticidal plants offer unique and challenging opportunities for exploration and development of their own botanicals. Following is an overview pointing out the effectiveness, uses, safety, and commercialization of the plant based insecticides.

Synthetic Pesticides and their Side Effects

The current methods for managing stored grain pests depend heavily on synthetic pesticides. Their uninterrupted and indiscriminate use has not only led to the development of resistant strains (Champ and Dyte, 1976, Georgiou and Lagunes-Tejeda, 1991) but also accumulation of toxic residues on food grains used for human consumption has led to the health problems (Sharma and Meshram, 2006). Another method is the use of synthetic fumigants, which has also led to increased cost of application, pest resistance, lethal effects on non target organisms and toxicity to users (Okonkwo and Okoye, 1996). There is increasing public concern over the level of pesticide residues in food. This concern has encouraged researchers to look for alternative solutions to synthetic pesticides. Botanical insecticides have long been touted as attractive alternatives to synthetic chemical insecticides for pest management because botanicals pose little threat to the environment or to human health. The
body of scientific literature documenting bioactivity of plant derivatives to arthropod pests continues to expand, yet only a handful of botanicals are currently used in agriculture in the industrialized world, and there are prospects for commercial development of new botanical products. The use of plant products as protectants could offer a solution for the problems of availability, health risks, costs and resistance in the case of synthetic pesticides, and for the lack of equipment for hermetic storage, gamma irradiation and controlled atmospheres. The mixing with plant oils is an ancient Indian and African method of protecting grains against insect attack (Pereira, 1983) and most of the reported studies with plant oils have involved use against stored grain insect pests. An increasing number of plant oils have been screened for preventing post-harvest losses due to insects (Golob and Webley, 1980). Several kinds of materials are used as a means of stored food protection, including chemical fumigation, treatment with synthetic pesticides, botanicals and inert materials, only the last two will be treated, reasons for which has already been mentioned earlier.

Botanicals Used in Stored Food Protection

Botanicals are plants or plant-derived products having active ingredients for the control of storage pests. These are (i) spices, and (ii) medicinal and other plants.

Spices

In addition to being used to flavour foods, spices have been used from ancient times to protect stored products from pests. Traditionally, pieces of dried spices or ground spices were used to sprinkle over or mix with stored foods, but recently the use of extracts or oils has been experimentally tried with encouraging results. The list of spices used in stored food protection. Among the most common spices used in storage food protection are:

Ginger

It has been generally known that ginger is effective against a number of stored insect pests. For example, it caused adult mortality in *C. chinensis*, and had a repellent effect on *T. castaneum* (Ho 1995).

Turmeric

Turmeric has been reported to be repellent against a number of storage insects (Jilani and Su 1983; Jilani and Saxena 1990). Chandler *et al.* (1991) reported that turmeric powder applied to rice did not cause *T. castaneum* and *S. zeamais* to suffer significant mortality during a 21-day exposure, and that after 3- and 6-month storage, turmeric treat-ments of rice only suppressed more than 50% of the *F*₁ progeny. Unjitwatana *et al.* (1997) reported that essential oils from turmeric could be used as insecticides, while tumerone was effective as a repellent against stored grain insects.

Clove

Clove buds have been found to repel *T. castaneum* and kill *Ctenocephalides canis* and *Pediculus humanus* (Grainge and Ahmed 1988). Recently, Ho (1995) reported that non-polar clove extracts were very effective against adult *S. zeamais* and eggs of *T. castaneum*. Moreover, these extracts could suppress *F*₁ progeny production in both species of beetles, implying an ovicidal action of these extracts. Besides being insecticidal, clove extracts were repellent to *S. oryzae*. The repellent effect of cloves against stored grain insects is well documented (Grainge and Ahmed 1988).

Star Anise

Non-polar star anise extracts were also found by Ho (1955) to be effective against adults and eggs of *T. castaneum*, but not able to kill *S. zeamais*, although their *F*₁ progeny production was completely suppressed. This fact led her to suggest that *S. zeamais* eggs were probably very susceptible to the extracts.

Garlic

Garlic has been well known to have repellent effects on *S. zeamais*. It was also shown to repel *T. castaneum* (Mohiuddin 1987). Ho (1995) reported that garlic oil showed pronounced insecticidal
action against adults of *T. castaneum* and *S. zeamais*.

Greater Galangal

It is well known in many Asian countries that the rhizome of greater galangal (*Alpinia galanga*) can be used as an insecticide. As for storage pests, Visetson (1994) applied its extracts for the control of *T. castaneum* and *S. zeamais*.

Black Pepper

Morallo-Rejesus et al. (1990) reported that black pepper could inhibit the development of F1 progenies of *C. chinensis*.

Medicinal and Other Plants

In addition to spices, many other botanicals have also been used to combat stored pests. Among these are medicinal plants, which are normally used to cure human’s illness, but can also be used to protect stored food; others are plants which are known to have effects on stored pests. Leaf extract of all the plants (*Prosophis* sp., *Nerium* sp., *Ocimum* sp., *Acalypha* sp., *Catharanthus* sp., and *Vitex* sp.) caused significant ovipositional deterrent effect against pulse beetle. Leaf extract of *Vitex* sp. leaf extract caused maximum reduction in egg viability (61.7%) followed by *Catheranthus* sp. leaf extract (56.7%). *Vitex* sp treated seeds at 5% level caused maximum reduction in adult emergence (85.0%) followed by *Catheranthus* sp. (83.7%), *Acalypha* sp. (73.3%), *Nerium* sp. (70.0%), *Ocium* sp. (68.7%) and minimum reduction was recorded in case of *Prosphis* sp. (68.0%) (Sathyseelan et al., 2008).

The repellent activity of plant powders of *A. mexicana*, *P. juliflora* and *T. purpurea* were tested against *T. castaneum*. In general, all the plant powders showed repellent activity (Pugazhvendan et al., 2009). Bean seeds treated with pyrethrum excelled other treatments by having low number of holes per seed, damaged seeds, percent of damaged seeds and weight loss. Garlic performed better in reducing number of holes per seed, damaged seeds, percentage damaged seeds and weight loss than no pesticide application treatment (Mulungu, 2007). The sweet flag rhizome powder @ 10.0 g / kg of seed found better by recording significantly higher germination percentage (87.00%), vigour index (2694) and dry weight of seedlings (329.50 mg) and lower electrical conductivity (0.488 dSm-1) and insect infestation (3.33%) compared to untreated control (77.31%, 2265, 326.67 mg, 0.540 dSm-1, 32.67% respectively) at the end of 10th month of storage (Channabasanagowda et al., 2008). Derbalah (2012) revealed that, the tested botanical extracts (*Cassia senna*, *Caesalpinia gilliesii*, *Thespesia populnea* var. *acutiloba*, *Chrysanthemum frutescens*, *Euonymus japonicus*, *Bauhinia purpurea*, and *Cassia fistula*) showed high efficiency against *T. granarium* with respect to mortality and progeny of the adults. *C. senna* was...
the most effective botanical extract against *T. granarium*. Its seeds are toxic to many insects. Its leaves have certain ingredients that

Table 1. List of botanical used for protection of stored food grains (Reviewed by Sanjeet Kumar-2017)

<table>
<thead>
<tr>
<th>S.N.</th>
<th>Scientific name (Common name)</th>
<th>Effect on storage pests</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Allium sativum (Garlic)</td>
<td>Repels T. castaneum</td>
<td>Mohiuddin 1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oil kills T. castaneum</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Alpinia galanga (Greater galangal)</td>
<td>S. zeamais Strong repellent for T. castaneum and S. zeamais</td>
<td>Ho 1995</td>
</tr>
<tr>
<td>3</td>
<td>Alpinia galanga (Greater galangal)</td>
<td>Extracts are insecticidal to S. zeamais and T. castaneum</td>
<td>Visetson 1994</td>
</tr>
<tr>
<td>4</td>
<td>Curcuma longa (Turmeric)</td>
<td>Repels a number of stored insects 2 % powder mix with rice and wheat can protect attack of storage pests</td>
<td>Jilani and Su 1983, Chaterjee 1980</td>
</tr>
<tr>
<td>5</td>
<td>Illicium verum (Star anise)</td>
<td>Extract kills adults and eggs of T. castaneum</td>
<td>Ho 1995</td>
</tr>
<tr>
<td>6</td>
<td>Piper nigrum (Black pepper)</td>
<td>Inhibit development of F₁ of C. chinensis</td>
<td>Morallo-Rejesus et al.</td>
</tr>
<tr>
<td>7</td>
<td>Syzygium aromaticum (Clove tree)</td>
<td>Repels T. castaneum Repels a number of grain insects</td>
<td>Grainge & Ahmed 1988</td>
</tr>
<tr>
<td>8</td>
<td>Zingiber officinale (Ginger)</td>
<td>Cause adult mortality in C. chinensis and repel T. castaneum</td>
<td>Ho 1995</td>
</tr>
<tr>
<td>9</td>
<td>Acorus calamus (sweet flag)</td>
<td>Oil is toxic to S. oryzae and S. cerealella Rhizome powder gave protection to wheat and paddy in storage for 8 mos.</td>
<td>Chaterjee 1980</td>
</tr>
<tr>
<td>10</td>
<td>Adhatoda vasica (Vasaka)</td>
<td>Resin toxic to stored grain insects Leaf powder effective against S. oryzae</td>
<td>Teotia & Tewari 1977, Dastur 1951 and R. dominica, Chellappa & Chelliah</td>
</tr>
<tr>
<td>11</td>
<td>Agave Americana (century plant)</td>
<td>Leaf extract inhibits growth of S. cerealella</td>
<td>Grainge and Ahmed 1988</td>
</tr>
<tr>
<td>12</td>
<td>Annona squamosa (Sugarapple, custard apple)</td>
<td>Leaf used as an insecticide against</td>
<td>Grainge and Ahmed 1988</td>
</tr>
<tr>
<td>13</td>
<td>Artemisia absinthium (Absinthe)</td>
<td>Almost every part is pesticidal but seed kernel has maximum pesticidal activity. Some of insect pests of stored products which are susceptible to neem are T. granarium Neem oil at 0.5 % is the best surface protectant against pulse weevils</td>
<td>Ketkar 1987, Numerous references</td>
</tr>
<tr>
<td>14</td>
<td>Azadirachta indica (Neem)</td>
<td>Oil used as surface protectant against monophyllum pulse weevils</td>
<td>Ketkar 1987</td>
</tr>
<tr>
<td>15</td>
<td>Calophyllum (Undi)</td>
<td>Oil used as surface protectant against rice cedar weevil for30 days at dosage 1000 ppm</td>
<td>Singh et al. 1989</td>
</tr>
<tr>
<td>16</td>
<td>* Cedrus deodadra* (Himalayan Wood)</td>
<td>Leaf and drupe powders (1 and 4 %)</td>
<td>Teotia & Tewari 1971</td>
</tr>
<tr>
<td>17</td>
<td>Melia azedarach (Chinaberry)</td>
<td>Extract is repellent against T. castaneum</td>
<td>Nagasampagi & Sharma 1982</td>
</tr>
<tr>
<td>18</td>
<td>Parthenium hysterophorus (Congress grass)</td>
<td>Leaves have insecticidal property</td>
<td>Ahmed & Koppel 1987</td>
</tr>
<tr>
<td>19</td>
<td>Pongamia glabra (Pongam oil tree)</td>
<td>Oil used as surface protectant Macassar against pulses weevils oil tree</td>
<td>Ketkar 1987</td>
</tr>
<tr>
<td>20</td>
<td>Schleicheria triguta (Lac tree)</td>
<td>Seeds are insecticidal to C. chinensis</td>
<td>Putterudrian & Bhatta 1955</td>
</tr>
<tr>
<td>21</td>
<td>Vitex negunda (Indian privet)</td>
<td>Leaves have insecticidal property against stored grain pests</td>
<td>Ahmed & Koppel 1987</td>
</tr>
</tbody>
</table>
inhibit the growth of certain stored grain insects. Indian Privet leaves exhibit insecticidal property against stored grain insects (Narong Chomchalow, 2003). Abdullahi et al. (2011) revealed that Vittallaria paradoxa has great potential for use as a plant- based biopesticide for controlling pulse beetle Callosobruchus maculatus. The ethanol seed extract of bitter gourd, karanja and urmoi showed grain protective effects over wheat grains up to 30 days. The extracts did not show any adverse effect on germination capability of wheat seeds even after 3 months of treatments (Islam, 2002). Lime peel oil is effective in the protection of maize against weevil Sitophilus zeamais (Abdullahi et al., 2011). Dodder vine extract was found effective in checking oviposition, adult progeny development and severity of seed damage. Seeds treated with 5 per cent concentration of dodder vine extract were less preferred for oviposition, adult emergence and seed weight loss by Callosobruchus chinensis and this conc. might be useful in protection of pulse seed (Rahman et al., 2010).

The reduction in fecundity of Callosobruchus maculatus (F.) may be attributed to the toxicity of plant extracts and plant powders (kaner leaf extract (Nerium indicum), khejri leaf extract (Prosopis cineraria), neem leaf extract (Azadirachta indica), safeda leaf extract (Eucalyptus globulus), tomato leaf extract (Lycopersicum esculentum) and mustard seed extract (Brassica compestris) and four plant powders viz., black pepper powder (Piper nigrum), garlic clove powder (Allium sativum), tulsi leaf powder (Ocimum sanctum) and turmeric rhizome powder (Curcuma longa), affecting the normal physiology of the insects (Singh, 2011). Volatile oil of Citrus reticulate resulted in 100.00 per cent mortality of Sitophilus oryzae after 24 hours of exposure followed by Curcuma longa (90.00 %), Psidium guajava (52.50 %) and Pogostemon cablin (20.00 %). Among powders, powder of Zingiber officinale was proved to be effective to some extent resulting in 23.34 per cent mortality followed by P. Guajava and C. reticulata at 6.67 per cent respectively after 72 hours of exposure (Chayengia et al, 2010). The percentage of oviposition deterrence from the infested chickpea due to infestation of Cowpea weevil, Callosobruchus maculatus was significantly reduced in treatments to which oils of sesame (98.49%), olive (96.54%) and sunflower (95.37%) had been added (Mohamed, 2012).

Muhammad et al. (2005) indicate that neem oil has a strong insecticidal effect on stored grain beetles when used in proportions ranging from 5 to 20 percent applied on packing bags. The least number of F1 adults emerged from black gram seeds treated with neem oil. The nishinda oil extract was the most toxic of three extracts tested (nishinda, eucalyptus and bankalmi). Bablah ash was the most effective compared to the powdered leaves of nishinda, eucalyptus and bankalmi. The powdered leaves and extracts of nishinda, eucalyptus and bankalmi, at a 3% mixture, provided good protection for black gram seeds by reducing insect oviposition, F1 adult emergence, and grain infestation rates.

The oil treatment did not show adverse effects on germination capability of seeds, even after three months of treatment (Rahman and Talukder, 2006). Kiradoo and Srivastava, (2010) suggest that formulations of both the species of Ocimum have a potential to act as ovipositional deterrent and can be employed against C. chinensis for its control Ocimum sanctum and Ocimum basilicum (Lamiaceae). Application of mustard oil combined with Paecilomyces fumosoroseus on foam covering gunny bags provided promising oviposition deterrenery, toxicity and suppressing Bruchidius Incarnates infestation, persistence and protecting broad bean seeds from beetles’ infestation for 120 days during storage (Sabour and Shadia, 2010). The highest bioactivity (90 - 100% mortality) was manifested by the crude ethanol extracts of Azadirachta indica (Neem), Anona reticulate (Anona) and Ocimum anctum (Maduruthala/sacred bail) among the crude ethanol extracts tested. Oils of O. sanctum at 1.5 lL and A. reticulata at 3.0 lL completely inhibited oviposition and adult emergence of Callosobruchus chinensis L. and Callosobruchus maculatus L. Clove powder was the most effectve among the four powders tested for adult mortality followed by root dust of papaya. Among the plant powders tested, Maduruthala (O. sanctum) was the most effective for suppressing oviposition and adult emergence of Callosobruchus chinensis L. and Callosobruchus maculatus L. Branches

Sanjeet Kumar, Opin Kumar, and S. P. Singh

International Journal of Agricultural Invention 2(1): 2017
of *Vitex negundo* with green leaves were kept among the gunny bags to repel the storage pests (Roy and Mondal, 1998). Mixing of grains with the powders of *V. negundo* and neem in between the layers of bags filled with grains gave protection for paddy was reported (Vivekanandan, 1993; 1994).

Safety

It should not be assumed that just because the botanical pesticides are naturally derived that they are safe to use and consume by humans, and some form of safety assessment needs to be considered. In order to assess their mammalian toxicity, some of the more promising plant species were tested for toxic effects against vertebrates (Belmain *et al.* 2001). Field trials are required to assess the practical applicability of the botanical pesticides. Biosafety studies should be conducted to ascertain their toxicity to humans, animals and crop plants. Evidence collected from small-scale farmers indicates that they prefer pesticidal plant materials over other forms of pest control during storage. However, individual farmer knowledge about different plants and how best to use them varies considerably. The identification of novel compounds or modes of action found in the botanicals could lead to the development of new commercial products for the wider benefit of humanity and the country of origin. Efforts should be made scientifically to document the pesticidal plants and to investigate the biocontrol efficacy of plant diseases of the plant products. Field trials are required to assess the practical applicability of the botanical pesticides. Biosafety studies should be conducted to ascertain their toxicity to humans, animals and crop plants.

REFERENCES

Manuscript received on April 15, 2017, Accepted for publication on May 26, 2017